3.241 \(\int \frac {(a+b \sin ^{-1}(c x))^2}{x^2 \sqrt {d-c^2 d x^2}} \, dx\)

Optimal. Leaf size=183 \[ -\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{d x}-\frac {i c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}}+\frac {2 b c \sqrt {1-c^2 x^2} \log \left (1-e^{2 i \sin ^{-1}(c x)}\right ) \left (a+b \sin ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}}-\frac {i b^2 c \sqrt {1-c^2 x^2} \text {Li}_2\left (e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}} \]

[Out]

-I*c*(a+b*arcsin(c*x))^2*(-c^2*x^2+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)+2*b*c*(a+b*arcsin(c*x))*ln(1-(I*c*x+(-c^2*x^2
+1)^(1/2))^2)*(-c^2*x^2+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)-I*b^2*c*polylog(2,(I*c*x+(-c^2*x^2+1)^(1/2))^2)*(-c^2*x^
2+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)-(a+b*arcsin(c*x))^2*(-c^2*d*x^2+d)^(1/2)/d/x

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 183, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {4681, 4625, 3717, 2190, 2279, 2391} \[ -\frac {i b^2 c \sqrt {1-c^2 x^2} \text {PolyLog}\left (2,e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{d x}-\frac {i c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}}+\frac {2 b c \sqrt {1-c^2 x^2} \log \left (1-e^{2 i \sin ^{-1}(c x)}\right ) \left (a+b \sin ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSin[c*x])^2/(x^2*Sqrt[d - c^2*d*x^2]),x]

[Out]

((-I)*c*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^2)/Sqrt[d - c^2*d*x^2] - (Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]
)^2)/(d*x) + (2*b*c*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])*Log[1 - E^((2*I)*ArcSin[c*x])])/Sqrt[d - c^2*d*x^2]
- (I*b^2*c*Sqrt[1 - c^2*x^2]*PolyLog[2, E^((2*I)*ArcSin[c*x])])/Sqrt[d - c^2*d*x^2]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 3717

Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Simp[(I*(c + d*x)^(m + 1))/(d*
(m + 1)), x] - Dist[2*I, Int[((c + d*x)^m*E^(2*I*k*Pi)*E^(2*I*(e + f*x)))/(1 + E^(2*I*k*Pi)*E^(2*I*(e + f*x)))
, x], x] /; FreeQ[{c, d, e, f}, x] && IntegerQ[4*k] && IGtQ[m, 0]

Rule 4625

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Subst[Int[(a + b*x)^n/Tan[x], x], x, ArcSin[c*
x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]

Rule 4681

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(
(f*x)^(m + 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSin[c*x])^n)/(d*f*(m + 1)), x] - Dist[(b*c*n*d^IntPart[p]*(d + e*x
^2)^FracPart[p])/(f*(m + 1)*(1 - c^2*x^2)^FracPart[p]), Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSi
n[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && EqQ[m + 2*p
 + 3, 0] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\left (a+b \sin ^{-1}(c x)\right )^2}{x^2 \sqrt {d-c^2 d x^2}} \, dx &=-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{d x}+\frac {\left (2 b c \sqrt {1-c^2 x^2}\right ) \int \frac {a+b \sin ^{-1}(c x)}{x} \, dx}{\sqrt {d-c^2 d x^2}}\\ &=-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{d x}+\frac {\left (2 b c \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int (a+b x) \cot (x) \, dx,x,\sin ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}}\\ &=-\frac {i c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{d x}-\frac {\left (4 i b c \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {e^{2 i x} (a+b x)}{1-e^{2 i x}} \, dx,x,\sin ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}}\\ &=-\frac {i c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{d x}+\frac {2 b c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}-\frac {\left (2 b^2 c \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int \log \left (1-e^{2 i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{\sqrt {d-c^2 d x^2}}\\ &=-\frac {i c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{d x}+\frac {2 b c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}+\frac {\left (i b^2 c \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}\\ &=-\frac {i c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {d-c^2 d x^2}}-\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{d x}+\frac {2 b c \sqrt {1-c^2 x^2} \left (a+b \sin ^{-1}(c x)\right ) \log \left (1-e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}-\frac {i b^2 c \sqrt {1-c^2 x^2} \text {Li}_2\left (e^{2 i \sin ^{-1}(c x)}\right )}{\sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.45, size = 159, normalized size = 0.87 \[ -\frac {\sqrt {1-c^2 x^2} \left (a \left (a \sqrt {1-c^2 x^2}-2 b c x \log (c x)\right )+2 b \sin ^{-1}(c x) \left (a \sqrt {1-c^2 x^2}-b c x \log \left (1-e^{2 i \sin ^{-1}(c x)}\right )\right )+b^2 \left (\sqrt {1-c^2 x^2}+i c x\right ) \sin ^{-1}(c x)^2+i b^2 c x \text {Li}_2\left (e^{2 i \sin ^{-1}(c x)}\right )\right )}{x \sqrt {d-c^2 d x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcSin[c*x])^2/(x^2*Sqrt[d - c^2*d*x^2]),x]

[Out]

-((Sqrt[1 - c^2*x^2]*(b^2*(I*c*x + Sqrt[1 - c^2*x^2])*ArcSin[c*x]^2 + 2*b*ArcSin[c*x]*(a*Sqrt[1 - c^2*x^2] - b
*c*x*Log[1 - E^((2*I)*ArcSin[c*x])]) + a*(a*Sqrt[1 - c^2*x^2] - 2*b*c*x*Log[c*x]) + I*b^2*c*x*PolyLog[2, E^((2
*I)*ArcSin[c*x])]))/(x*Sqrt[d - c^2*d*x^2]))

________________________________________________________________________________________

fricas [F]  time = 0.44, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-c^{2} d x^{2} + d} {\left (b^{2} \arcsin \left (c x\right )^{2} + 2 \, a b \arcsin \left (c x\right ) + a^{2}\right )}}{c^{2} d x^{4} - d x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))^2/x^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*d*x^2 + d)*(b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^2)/(c^2*d*x^4 - d*x^2), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))^2/x^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> An error occurred running a Giac command:INPUT:sage2OUTPUT:sym2poly/r2sym(co
nst gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.38, size = 638, normalized size = 3.49 \[ -\frac {a^{2} \sqrt {-c^{2} d \,x^{2}+d}}{d x}+\frac {i b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )^{2} \sqrt {-c^{2} x^{2}+1}\, c}{\left (c^{2} x^{2}-1\right ) d}-\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )^{2} x \,c^{2}}{\left (c^{2} x^{2}-1\right ) d}+\frac {b^{2} \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )^{2}}{\left (c^{2} x^{2}-1\right ) x d}-\frac {2 b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c \arcsin \left (c x \right ) \ln \left (1+i c x +\sqrt {-c^{2} x^{2}+1}\right )}{d \left (c^{2} x^{2}-1\right )}-\frac {2 b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c \arcsin \left (c x \right ) \ln \left (1-i c x -\sqrt {-c^{2} x^{2}+1}\right )}{d \left (c^{2} x^{2}-1\right )}+\frac {2 i b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c \polylog \left (2, -i c x -\sqrt {-c^{2} x^{2}+1}\right )}{d \left (c^{2} x^{2}-1\right )}+\frac {2 i b^{2} \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c \polylog \left (2, i c x +\sqrt {-c^{2} x^{2}+1}\right )}{d \left (c^{2} x^{2}-1\right )}+\frac {2 i a b \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) c}{d \left (c^{2} x^{2}-1\right )}-\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) x \,c^{2}}{\left (c^{2} x^{2}-1\right ) d}+\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )}{\left (c^{2} x^{2}-1\right ) x d}-\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )^{2}-1\right ) c}{d \left (c^{2} x^{2}-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsin(c*x))^2/x^2/(-c^2*d*x^2+d)^(1/2),x)

[Out]

-a^2/d/x*(-c^2*d*x^2+d)^(1/2)+I*b^2*(-d*(c^2*x^2-1))^(1/2)*arcsin(c*x)^2/(c^2*x^2-1)/d*(-c^2*x^2+1)^(1/2)*c-b^
2*(-d*(c^2*x^2-1))^(1/2)*arcsin(c*x)^2/(c^2*x^2-1)*x/d*c^2+b^2*(-d*(c^2*x^2-1))^(1/2)*arcsin(c*x)^2/(c^2*x^2-1
)/x/d-2*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)*c*arcsin(c*x)*ln(1+I*c*x+(-c^2*x^2+1)^(1/2
))-2*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)*c*arcsin(c*x)*ln(1-I*c*x-(-c^2*x^2+1)^(1/2))+
2*I*b^2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)*c*polylog(2,-I*c*x-(-c^2*x^2+1)^(1/2))+2*I*b^2
*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)*c*polylog(2,I*c*x+(-c^2*x^2+1)^(1/2))+2*I*a*b*(-c^2*x
^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/d/(c^2*x^2-1)*arcsin(c*x)*c-2*a*b*(-d*(c^2*x^2-1))^(1/2)*arcsin(c*x)/(c^2*x
^2-1)*x/d*c^2+2*a*b*(-d*(c^2*x^2-1))^(1/2)*arcsin(c*x)/(c^2*x^2-1)/x/d-2*a*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+
1)^(1/2)/d/(c^2*x^2-1)*ln((I*c*x+(-c^2*x^2+1)^(1/2))^2-1)*c

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {{\left (\left (-1\right )^{-2 \, c^{2} d x^{2} + 2 \, d} \sqrt {d} \log \left (-2 \, c^{2} d + \frac {2 \, d}{x^{2}}\right ) + \sqrt {d} \log \left (x^{2} - \frac {1}{c^{2}}\right )\right )} a b c}{d} + \frac {-\frac {\frac {1}{4} \, {\left (7 \, \sqrt {c x + 1} \sqrt {-c x + 1} \arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right )^{2} + 4 \, x \int \frac {9 \, \sqrt {c x + 1} \sqrt {-c x + 1} \arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right )^{2} - 14 \, {\left (c^{3} x^{3} - c x\right )} \arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right )}{4 \, {\left (c^{2} x^{4} - x^{2}\right )}}\,{d x}\right )} b^{2}}{4 \, x}}{\sqrt {d}} - \frac {2 \, \sqrt {-c^{2} d x^{2} + d} a b \arcsin \left (c x\right )}{d x} - \frac {\sqrt {-c^{2} d x^{2} + d} a^{2}}{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))^2/x^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

-((-1)^(-2*c^2*d*x^2 + 2*d)*sqrt(d)*log(-2*c^2*d + 2*d/x^2) + sqrt(d)*log(x^2 - 1/c^2))*a*b*c/d + b^2*integrat
e(arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))^2/(sqrt(c*x + 1)*sqrt(-c*x + 1)*x^2), x)/sqrt(d) - 2*sqrt(-c^2*d*
x^2 + d)*a*b*arcsin(c*x)/(d*x) - sqrt(-c^2*d*x^2 + d)*a^2/(d*x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2}{x^2\,\sqrt {d-c^2\,d\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(c*x))^2/(x^2*(d - c^2*d*x^2)^(1/2)),x)

[Out]

int((a + b*asin(c*x))^2/(x^2*(d - c^2*d*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}{x^{2} \sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asin(c*x))**2/x**2/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral((a + b*asin(c*x))**2/(x**2*sqrt(-d*(c*x - 1)*(c*x + 1))), x)

________________________________________________________________________________________